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Motivation

Computation of volatility/covariance of financial asset returns plays a central role
for many issues in finance: risk management, hedging strategies, forecasting...

Black&Scholes model - constant volatility - does not account for (e.g.) volatility
smile and covariance between asset returns and volatility (leverage effect) V
stochastic volatility models proposed to model asset price evolution and to price
options (adding risk factors represented by Brownian motions
[Heston, 1993, Hull and White, 1987, Stein and Stein, 1991], jumps [Bates, 1996],
introducing memory [Hobson and Rogers, 1998], [Comte and Renault, 1998] (fBM
with H > 1/2) to recent rough volatility [Alos et al., 2007, Fukasawa, 2011] (fBM
with H < 1/2).

Availability of high frequency data have the potential to improve the capability of
computing volatility/covariances in an efficient way to many extend: forecasting,
risk factor models, asset allocation....
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Volatility: The problem

Volatility is not observable

Estimation

parametric: the expected volatility is modeled through a functional form of
variables observed in the market

non-parametric: the computation of the historical volatility without assuming a
functional form of the volatility
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Outline

Definition of Fourier estimator of spot and integrated volatility/covariance

Asymptotic Normality

Finite Sample properties of Fourier estimator with high frequency data

Some applications:

Quarticity estimation

Volatility of Volatility estimation

Leverage estimation

Forecasting Volatility

Contingent claim pricing-hedging (i.e., stochastic derivation of volatility along the
time evolution)

Non-parametric calibration of the geometry of the Heath-Jarrow-Morton interest
rates dynamics (⇒ measure of hypoellipticity of the infinitesimal generator)

Dynamic Principal Component Analysis

Optimal Portfolio Allocation

Indicators of market instability (2020)
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Continuous time model: Non-parametric/Model free

(B) dpj(t) =
d∑

i=1

σj
i (t) dW i (t) + bj(t) dt, j = 1, . . . , n,

W = (W 1, . . . ,W d) are independent Brownian motions and σ∗∗ and b∗ are adapted
random processes satisfying

E [

∫ 2π

0

(bj(t))2dt] <∞, E [

∫ 2π

0

(σj
i (t))4dt] <∞ i = 1, . . . , d , j = 1, . . . ,m

Objective: estimation of the time dependent volatility matrix:

Σjk(t) =
d∑

i=1

σj
i (t)σk

i (t) j , k = 1, . . . , n
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Main Issues

p∗(t) asset log-price Brownian semimartingale ⇒ integrated volatility/covariance∫ t

0

Σik(s)ds = P − lim
n→∞

∑
0≤j≤n−1

(
pi (tj+1)− pi (tj)

)(
pk(tj+1)− pk(tj)

)
.

Nevertheless, when sampling high frequency returns, three difficulties arise:

1) the distortion from efficient prices due to the market microstructure noise such as
price discreteness, infrequent trading,...[Roll, 1984].
2) instantaneous volatility computation involves a sort of numerical derivative, which
gives rise to numerical instabilities [Foster and Nelson, 1996, Comte and Renault, 1998]

In the multivariate case also:

3) the non-synchronicity of the arrival times of trades across markets leads to a bias

towards zero in correlations among stocks as the sampling frequency increases

[Epps, 1979]
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Fourier method

Mean Covariance Theorem [Malliavin and M. 2002, 2009]

Theorem

Consider a process p satisfying the assumption (B). Then we have:

1

2π
F(Σij) = F(dpi ) ∗B F(dpj). (1)

The convergence of the convolution product (1) is attained in probability where, for
k ∈ Z

F(dpi )(k) :=
1

2π

∫ 2π

0

e−ikt dpi (t)

(Φ ∗B Ψ)(k) := lim
N→∞

1

2N + 1

N∑
s=−N

Φ(s)Ψ(k − s)

F(Σij)(k) :=
1

2π

∫ 2π

0

e−ikt Σij(t) dt
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Fourier instantaneous covariance computation

By the theorem we gather all the Fourier coefficients of the volatility matrix by means of
the Fourier transform of the log-returns. Then reconstruct the co-volatility functions
Σij(t) from its Fourier coefficients by the Fourier-Fejer summation:
let for i , j = 1, 2 and for any |k| ≤ N,

c ijN(k) :=
1

2N + 1

∑
|s|≤N

F(dpi )(s)F(dpi )(k − s),

then

Σij(t) = lim
M→∞

∑
|k|≤M

(
1− |k|

M + 1

)
c ijN(k)eikt .
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Asymptotic Normality for (univariate) Fourier estimator

Let {0 ≤ t0,n ≤ t1,n ≤ · · · ≤ tkn,n = 2π} be the (possibly unequally-spaced) trading dates
(we omit the second index), the returns are δi (p) := p(ti+1)− p(ti ).
Given the discrete Fourier transform

ck(dpn) :=
1

2π

kn−1∑
i=0

e−ikti δi (p),

consider the following convolution formula

ck(σ2
n,N) :=

2π

2N + 1

∑
|h|≤N

ch(dpn)ck−h(dpn)

For any t ∈ (0, 2π), then σ2(t) from its Fourier coefficients by the Fourier-Fejer inversion
formula

σ̂2
n,N,M(t) =

∑
|k|<M

(
1− |k|

M

) 2π

2N + 1

∑
|h|≤N

ch(dpn)ck−h(dpn)

 eitk

The definition of the estimator σ̂2
n,N,M(t) depends on three parameters.
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We can write the estimated Fourier coefficients as

ck(σ2
n,N) =

1

2π

n−1∑
i=0

n−1∑
j=0

DN(tj − ti )e
−iktj δi (p)δj(p),

where DN is the rescaled Dirichlet kernel

DN(x) =
1

2N + 1

∑
|h|≤N

eihx =
1

2N + 1

sin(2N + 1) x
2

sin x
2

. (2)

Thus, the Fourier estimator of spot volatility can be expressed as follows

σ̂2
n,N,M(t) =

1

2π

n−1∑
i=0

n−1∑
j=0

FM(t − tj)DN(tj − ti )δi (p)δj(p), (3)

where FM is the Fejer kernel

FM(x) =
∑
|k|≤M

(
1− |k|

M + 1

)
eikx
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The estimator (3) contains two terms: the quadratic part

1

2π

n−1∑
j=0

FM(t − tj)(δj(p))2 (4)

and the cross terms

1

2π

n−1∑
i=0

n−1∑
j=0
j 6=i

FM(t − tj)DN(tj − ti )δi (p)δj(p). (5)

The quadratic term (4) behaves like the Kernel-based spot volatility estimators seen in
[Fan and Wang, 2008].
The second addend (5) is crucial in terms of robustness of the estimator in the presence
of microstructure noise, through the choice of the frequency N
[Barndorff-Nielsen, Hansen, Lunde and Shephard, 2008].
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CLT

Assume (B) and σ is a.s. Hölder continuous with parameter ν ∈ (0, 1
2
) (e.g., driven by a

second Brownian semimartingale), and the following conditions hold:
limn,M→∞

Mγ

n
= a > 0, for some γ > 1, and limn,N→∞

N
n

= c > 0. Then, for any fixed
t ∈ (0, 2π), as n,N,M →∞,√

n

M

(
σ̂2
n,N,M(t)− σ2(t)

)
→ N

(
0,

4

3
(1 + 2η(c)) σ4(t)

)
,

where the convergence is stable in law. The constant η(c) is equal to 1
2c̃2 r(c̃)(1− r(c̃)),

where c̃ = 2c and r(x) = x − [x ], with [x ] the integer part of x .

Rate of convergence: The convergence rate is of order n
γ−1

2γ . It appears in the
proof that 1 < γ < 2ν + 1: for γ ≈ 2 the rate of convergence becomes 1

4
, which is

the optimal rate of convergence for a non-parametric spot volatility estimator.

Optimal variance: η(c) is nonnegative for any positive c and equal to zero when
c = 1

2
k, k = 1, 2, . . .. The case η(c) = 0 provides the optimal asymptotic variance

4
3
σ4(t), [Cuchiero and Teichmann, 2015]. The optimal asymptotic variance is

obtained for c = 1
2
k, k = 1, 2, . . . and the choice k = 1 (i.e., c = 1/2) corresponds

to the natural choice of the Nyquist frequency for the Fourier estimator.
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With this choice of c (in other words of N/n) the Fourier estimator has the same rate of
convergence and asymptotic variance of the Fejer kernel-based realized spot volatility.

With an appropriate choice of N/n, the effect of adding the cross terms in (3), which is

essential in order to get an estimator robust to microstructure noise, is also not

detrimental in view of the asymptotic efficiency.
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Model with microstructure

Market microstructure effects (discreteness of prices, bid/ask spreads, etc.) cause the
discrepancy between asset pricing theory based on semi-martingales and the data at very
fine intervals
The logarithm of the observed price process is given by

p̃(t) = p(t) + η(t), (6)

p(t) = the efficient log-price process
η(t) = the microstructure noise
p̃ is the observed price at a discrete unevenly spaced grid

• The random shocks η(tj,n), for {0 ≤ t0,n ≤ t1,n ≤ · · · ≤ tkn,n ≤ 2π} are i.i.d. with
mean zero and bounded fourth moment.
• The true return process δj,n(p) := p(tj,n)− p(tj−1,n) is independent of η(tj,n) for any
j , n.
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Bias

V :=

∫ 2π

0

σ2(t)dt integrated volatility

V̂n :=
n∑

j=1

(δj(p̃))2, realized volatility estimator

where n is the number of observations in the trading interval [0, 2π].
Under the hypothesis 2π/n is the time between adjacent logarithmic prices:

Realized Volatility Bias

E [V̂n − V ] = 2nE [η2]

Fourier Estimator Bias

For any fixed integers n,N the following identity holds

E [σ̂2
n,N − V ] = 2n E [η2]

(
1− 1

2N + 1

sin[(2N + 1)π
n

]

sin(π
n

)

)
(7)
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Under the condition N2/n→ 0

lim
n,N→∞

2n E [η2]

(
1− 1

2N + 1

sin[(2N + 1)π
n

]

sin(π
n

)

)
= 0.

Conclusion

Fourier estimator is asymptotically unbiased under the condition N2/n goes to 0.
Moreover the result (7) shows that for fixed n, i.e. for a finite sample, a suitable choice
of N allows for lower bias with respect to the realized volatility estimator.
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MSE

Realized Volatility MSE

E [(V̂n − V )2] = 2
2π

n
(Q + o(1)) + Λn,

where Q is the so-called integrated quarticity
∫ 2π

0
σ4(s)ds, and

Λn := n2α + nβ + γ,

with
α = (E [ε2])2, β = E [ε4] + 2E [ε2ε2

−1]− 3(E [ε2])2, (8)

γ = 4E [ε2]V − 2E [ε2ε2
−1] + 2(E [ε2])2. (9)

with the notation ε for ηj − ηj−1 for a generic j and ε−1 for ηj−1 − ηj−2 for the same j .
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Fourier Estimator MSE

Fourier Estimator MSE
For any fixed n,N the following relation holds

E [(σ̂2
n,N − V )2] = 2

2π

n
(Q + o(1)) + n2α̂ + nβ̂ + γ̂, (10)

where

α̂ = α (1 + D2
N(

2π

n
)− 2DN(

2π

n
)),

β̂ = β (1 + D2
N(

2π

n
)− 2DN(

2π

n
)),

γ̂ = γ + 4Q
2π

2N + 1
+ 4(E [η2]2 + E [η4])(2DN(

2π

n
)− D2

N(
2π

n
)), (11)

with α, β, γ as in (8)
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MSERV = 2
2π

n
(Q + o(1))

MSERVm = MSERV + n2α + nβ + γ →∞.

MSEF = MSERV + c(n,N),

where c(n,N)→ 0 as N, n→∞,1

MSEFm = MSEF + n2α̂(n,N) + nβ̂(n,N) + γ̃(n,N)

If N2/n→ 0 then
lim

n,N→∞
n2α̂(n,N) + nβ̂(n,N) = 0

and
lim

n,N→∞
γ̃(n,N) = 8E [η2]V + 2E [η4] + 6E [η2]2.

It follows that the MSE of the Fourier estimator does not diverge and by choosing N
conveniently we obtain that MSEF and MSEFm differ about the positive constant term.

1We prove that c(n,N) is less or equal than 4Q 2π/(2N + 1).
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Optimized Fourier estimator

A single optimization over the number of frequencies N renders the Fourier estimator
very efficient even in presence of microstructure noise

Formulae (7) and (10) provide a way to optimize the finite sample performance of the
Fourier estimator as a function of the number of frequencies by the minimization of the
bias and the MSE, for a given number of intra-daily observations.

For simulation and empirical applications, see [Mancino and Sanfelici, 2008].
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Application: market instability indicators

Identifying financial instability conditions using high frequency data.
Maria Elvira Mancino - Simona Sanfelici Journal of Economic Interaction and
Coordination, 2020
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Let xt be the logarithm of the price

dxt = a(xt)dWt −
1

2
a2(xt)dt. (12)

The variation process is the solution of the linearized SDE

dζt
ζt

= a′(xt)dWt − a′(xt)a(xt)dt.

The rescaled variation is defined

zt :=
ζt

a(xt)
. (13)

The following result shows that the perturbations of asset prices evolve through time
according to an ODE, see [Malliavin and Mancino, 2002] for the proof.

The rescaled variation (13) is differentiable with respect to t and it holds that

zt = zs exp(

∫ t

s

λτdτ) s ≤ t,

where

λτ = −1

2
(a′(xτ )a(xτ ) + a′′(xτ )a(xτ )) (14)

is called the price-volatility feedback rate.
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The feedback rate defined by (14) is a decay rate:

the negative sign of λ entails a damping effect ⇒ negative values correspond to
stable market directions

the positive sign of λ implies that any perturbation is amplified ⇒ large positive
values indicate market instability and usually anticipate a significant decrease in the
price level

values of λ around zero imply that the price level remains stable.

When λ is large then perturbations of price are more likely to propagate, so that an
increase in volatility in the presence of a large λ value may trigger a volatility feedback
effect and cause large price movements, as theory suggests (see also the empirical
analysis in [Inkaya and Ocur, 2014]).
Thus, the volatility feedback rate can reveal conditions that may facilitate the
propagation of perturbations in the market.
This may help to discriminate between stable market conditions and conditions when the
price process has a potential risk of being affected by an increase in the volatility.
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Estimation

In order to effectively compute the feedback rate, we need to express the rescaled
variation using quantities which can be empirically estimated using the price process
observations: we use iterated cross volatilities that can be estimated using the Fourier
estimation method.

Denoting by 〈 , 〉 the quadratic (co-)variation operation, define:

〈dxt , dxt〉 := At dt , 〈dAt , dxt〉 := Bt dt , 〈dBt , dxt〉 := Ct dt .

Then:

λt =
3

8

B2
t

A3
t

− 1

4

Bt

At
− 1

4

Ct

A2
t

. (15)

(Proof [Malliavin and Mancino, 2002])

M. E. Mancino (University of Firenze) The Fourier volatility estimation method and some applications July 7th, 2021 24 / 40



dAt = αtdt + γtdW
A
t , dBt = µtdt + βtdW

B
t ,

where W A and W B are Brownian motions, possible correlated with W .
Define, for |k| ≤ N,

ck(An,N) :=
2π

2N + 1

∑
|s|≤N

cs(dxn)ck−s(dxn), (16)

where

ck(dxn) =
1

2π

kn−1∑
j=0

e−iktj,nδj(x),

Ân,N,NA(t) :=
∑
|k|≤NA

(
1− |k|

NA + 1

)
ck(An,N)eikt ,

ck(Bn,N,M) :=
2π

2M + 1

∑
|j|≤M

cj(dxn)ck−j(dAn,N),

ck(Cn,N,M,L) :=
2π

2L + 1

∑
|j|≤L

cj(dxn,N)ck−j(dBn,N,M).2

2The statistical properties of the estimators of B, C and λ are studied in
[Mancino and Toscano, 2021], [Mancino et al., 2021].
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ck(dxn) =
1

2π

kn−1∑
j=0

e−iktj,nδj(x),

Ân,N,NA(t) :=
∑
|k|≤NA

(
1− |k|

NA + 1

)
ck(An,N)eikt ,

ck(Bn,N,M) :=
2π

2M + 1

∑
|j|≤M

cj(dxn)ck−j(dAn,N),

ck(Cn,N,M,L) :=
2π

2L + 1

∑
|j|≤L

cj(dxn,N)ck−j(dBn,N,M).2

2The statistical properties of the estimators of B, C and λ are studied in
[Mancino and Toscano, 2021], [Mancino et al., 2021].
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Application I: Market volatility and financial crisis

Empirical and theoretical studies have investigated the relationship between market
volatility and financial crisis. However, although there is a general consensus that
unusual levels of financial market volatility imply an increased likelihood of a
subsequent financial crisis, the use of high market volatility as an indicator of
financial instability is not completely reliable, in [Danielson et al., 2016].

As long as policymakers intervene just when risks materialize, this may lead to a
too little too late response. If we were able to go deeper in assessing the regularity
of the latent volatility dynamics by enhancing the discontinuities characterizing its
evolution, we could detect relevant differences between volatility paths that, under
standard scrutiny methods, would seem similar.
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Characteristics of the indicator

The indicator λt is designed to amplify relevant fluctuations in financial data, and
thus increase our ability to predict large price variations even at short-time horizons.

Instead of relying on a first-order measure (such as the volatility), the indicator
considers second order quantities

The indicator quantifies the rate of propagation of a perturbation of the price
process, thus it can be interpreted as a market breakdown index. When the
coefficient is positive, the perturbation propagates over a trajectory, when the
coefficient is negative, the perturbation is attenuated over a trajectory.

The rate of variation through time of an initial perturbation of the price process
enables us to understand if such a shock will be rapidly absorbed or, on the
contrary, it will be amplified by the market.

The indicator combines non-linearly volatility, leverage and covariance between
leverage and price and is model-free. It provides an early warning indicator of
instability for a given high frequency financial time series.
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Simulation study: CEV model

dxt = σe(δ−1)xtdWt −
1

2
σ2e2(δ−1)xtdt. (17)

1) we obtain an analytical formula for the indicator;
2) we use this explicit formula to perform a simulated analysis showing the effectiveness
in estimating the feedback effect and the relation occurring between the feedback rate
sign and the price variations.

A(xt) = σ2e2(δ−1)xt : if δ < 1, then A(xt) decreases if xt increases, and viceversa.
From (15), the process λt for the CEV model:

λt = −1

2
σ2δ(δ − 1)e2(δ−1)xt = −1

2
δ(δ − 1)At . (18)

The relation between λ and the spot volatility highlights the importance of using the
feedback effect to discriminate days with high volatility regimes:
If δ > 1 large volatility values do not necessarily denote market instability, since the
feedback effect is negative and the price tends to increase. If δ > 1, volatility is larger as
the price increases, and viceversa.

M. E. Mancino (University of Firenze) The Fourier volatility estimation method and some applications July 7th, 2021 28 / 40



Simulation study: CEV model

dxt = σe(δ−1)xtdWt −
1

2
σ2e2(δ−1)xtdt. (17)

1) we obtain an analytical formula for the indicator;
2) we use this explicit formula to perform a simulated analysis showing the effectiveness
in estimating the feedback effect and the relation occurring between the feedback rate
sign and the price variations.

A(xt) = σ2e2(δ−1)xt : if δ < 1, then A(xt) decreases if xt increases, and viceversa.
From (15), the process λt for the CEV model:

λt = −1

2
σ2δ(δ − 1)e2(δ−1)xt = −1

2
δ(δ − 1)At . (18)

The relation between λ and the spot volatility highlights the importance of using the
feedback effect to discriminate days with high volatility regimes:
If δ > 1 large volatility values do not necessarily denote market instability, since the
feedback effect is negative and the price tends to increase. If δ > 1, volatility is larger as
the price increases, and viceversa.

M. E. Mancino (University of Firenze) The Fourier volatility estimation method and some applications July 7th, 2021 28 / 40



CEV discretized by the forward Euler method over [0, 1] with n = 21600 equispaced
nodes
Fig. 1: Effect of a 5% perturbation of the initial price S0 = 100, σ = 0.3
Left panels δ = 1.5 Right panels, δ = 0.5
Upper panels: spot price trajectory (blue) and perturbed trajectory (red)
Lower panels: relative distance between the two trajectories plotted as function of time
Left panels: the distance reduces as time passes by, the initial perturbation is attenuated
Right panels: the two trajectories remain far apart, their relative distance tends to
increase over time
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Figura: Left panels: spot price trajectory (blue) and perturbed trajectory (red) in the
upper panel and relative distance between the two trajectories in the lower panel.
Parameter values: S0 = 100, σ = 0.3, δ = 1.5. Right panels: same format with δ = 0.5.
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The feedback rate λt is negative, the leverage Bt positive, the volatility At is larger as
the price increases, and viceversa (inverse leverage effect).
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Figura: Analytically computed trajectories of St , At , Bt , Ct and λt in the case of a stable
market (δ = 1.5).
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Opposite situation: δ = 0.5 and the feedback rate is positive

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

94

96

98

100

102

S(t) 

Spot price

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

1.12

1.14

1.16

1.18

1.2

λ(t) 

×10-4 Feedback effect

S
0

= 100; σ = 0.3; δ= 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

8.5

9

9.5

10

A(t) 

×10-4 Spot volatility

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-9.5

-9

-8.5

-8

B(t) 

×10-7 Spot leverage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

1.4

1.6

1.8

C(t) 

×10-9 C(t)

Figura: Analytically computed trajectories of St , At , Bt , Ct and λt in the case of a
unstable market (δ = 0.5).
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Figura: δ = 1.5: analytically computed spot functions St , At , Bt , Ct in blue. In red are
At , Bt , Ct . Cut-off frequencies: at the first level (At) set N = n/2, NA = n0.5; at the
second level (Bt) set M = NA, MB = (4NA)0.5; at the third level (Ct) set L = MB ,
LC = M0.5

B .

At each approximation step the resolution is lower, nevertheless the reconstruction of the
trajectories is very good.
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Comment: Although the approximation of the Fourier estimates of At , Bt and Ct is very
good, when combining them non-linearly to obtain λt , the resulting estimator is usually
biased (this fact is well recognized in the non-parametric estimation literature). We

consider the daily integrated value
∫ T

0
λτdτ as an indicator of market instability. The

approximation can be considered good, as it catches the correct negative sign with a hit
rate of 88%.
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Figura: Real integrated feedback
∫ T

0
λτdτ (blue) and its Fourier estimate (red) over 100

days with δ = 1.5.
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Empirical analysis

The potentiality of the indicator is tested on a sample of the S&P500 Futures including
the following financial market crashes:

2000-03-10: NASDAQ Crash (dot-com Bubble)

2001-02-19: Turkish Crisis

2001-09-11: Twin Tower Attacks

2001-12-27: Argentine Default

Those crises are very different in nature to each other and had quite different impact on
the S&P500 Futures series.
We provide empirical evidence that large values of the feedback rate reveal conditions in
the market where perturbations in the price level may evolve in large price declines or
changes in general.
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Figura: S&P 500 index futures from January 3rd, 2000 to December 31st, 2002. Upper
panel: log-price trajectory; middle panel: daily integrated feedback rate; lower panel:
daily integrated volatility.
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λt , At ,Bt , Ct from day 253 to day 255 (i.e., January 2-4, 2001), during the turbulent
period leading to the Turkish crisis, when the largest peak of λ occurs.
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Figura: S&P 500 index futures from January 2nd, 2001 to January 3rd, 2001 (days
253-255 in our sample). λt , Bt , At and Ct trajectories.
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