1 Teoria dei numeri - 2

Esercizi proposti

ESERCIZIO 1.1 Dimostrare che $3^{m+1}|(7^{3^m}-1)$ per ogni m>0.

ESERCIZIO 1.2 Determinare tutti gli m tali che sia $\frac{2 \cdot 5^n}{3^m + 1}$ che $\frac{9^m + 1}{5^m + 5}$ sono interi.

ESERCIZIO 1.3 Un numero si dice *perfetto* se è uguale alla somma dei suoi divisori escluso sè stesso (es: 6 = 1 + 2 + 3). Dimostrare che i numeri perfetti pari sono della forma $2^n(2^{n+1} + 1)$ per gli n tali che 2^{n+1} è primo.

ESERCIZIO 1.4 a) Trovare esplicitamente una x tale che $3x \equiv 1 \pmod{5^8}$.

b) Trovare esplicitamente una x tale che $3x \equiv 1 \pmod{5^6}$.

(Suggerimento: risolvere $3x \equiv 1 \pmod{5}$ e cercare di "sollevare" la soluzione ottenuta.)

ESERCIZIO 1.5 Dimostrare che per ogni p primo esiste un $n \in \mathbb{N}$ tale che $2^n + 3^n + 6^n - 1$ è divisibile per p.

ESERCIZIO 1.6 Determinare tutte le soluzioni intere positive di $x^{2009} + y^{2009} = 7^z$.

ESERCIZIO 1.7 Determinare il più piccolo valore di n per cui esattamente 8 coefficienti binomiali

$$\binom{n}{k}$$
, $k = 0, \ldots, n$

sono dispari.

Esiste una riga del triangolo di Tartaglia con esattamente 3 oppure 12 coefficienti binomiali dispari?

ESERCIZIO 1.8 Trovare tutti gli n positivi tali che $n|(2^n-1)$.

ESERCIZIO 1.9 [IMO 1990, 3] Determinare tutti gli n tali che $\frac{2^n+1}{n^2}$ è intero.

ESERCIZIO 1.10 Sia $\nu_p(n) = \max\{h \in \mathbb{N} : p^h|n\}$ la valutazione p-adica di n. Calcolare $\nu_2(5^k-1)$ per $k \in \mathbb{N}$.

Esercizio 1.11 Determinare le ultime due cifre di 2^{2015} .

Esercizio 1.12 Determinare la cifra delle unità di $7^{7^{7^7}}.$

Esercizio 1.13 Dimostrare che $\binom{2n}{n}$ è pari per ogni $n \in \mathbb{N}$.

ESERCIZIO 1.14 Consideriamo due interi a e b e sia n=a+b. Sia R il numero di riporti necessari per eseguire la somma quando a e b sono espressi in base p con p primo. Dimostrare che $R=\nu_p\left(\binom{n}{a}\right)$.

1